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Many of the difficulties that arise from the specification of open boundary condi-
tions when modeling a limited region of the ocean with theprimitive equationscan
be overcome by using a nonhydrostatic set of equations that is well posed in open
domains even without the viscous term. We simulate the mesoscale flow in a region of
the open ocean using the flow fields from a global circulation model to provide initial
and boundary data. Information flow across lateral boundaries is specified using the
method of characteristics. By modeling the region at higher resolutions than the fields
providing boundary conditions, we are able to resolve more structure and processes
in the flow than were detectable from the initial and boundary data. This is of value
for studying a region of the ocean in detail at moderate computational cost, if initial
and boundary data is available. Shortcomings of the characteristics-based formula-
tion of the boundary conditions and limitations in using such a model to selectively
refine a region within a coarser model are also examined.c© 1998 Academic Press

1. INTRODUCTION

Even though models of the ocean’s global circulation are able to deliver higher and higher
resolution and accuracy today, there is still a need to model regions of the ocean in greater
detail and at lesser cost than is possible with global models. Such regional models must
inevitably deal with open boundaries across which there is flow, and their development
has been largely impeded by the numerous difficulties associated with open boundary
conditions.

The difficulty with using traditional primitive equation models for the three-dimensional
flow in a region of the ocean is that the (inviscid) primitive equations (consisting of the hor-
izontal momentum equations, the hydrostatic approximation, and the continuity constraint
for an incompressible fluid) are ill-posed in domains with open boundaries [14, 2]. The
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direction of the characteristics at an open boundary can differ for different internal modes
of the system. Hence, the number of boundary conditions required at an open boundary
cannot be predetermined and local well-posed boundary conditions cannot be designed for
this system. Adding sufficiently large viscosity to the primitive equations changes their
form and makes them more amenable to open boundary conditions. While eddy viscosity is
an acceptable parameterization for subgridscale processes, the well-posedness of the model
that describes the physics ought not to be dependent on it. The model’s ability to handle
open boundaries would then depend on the size of eddy viscosity, and the minimum value
required to overcome the ill-posedness may exceed what is representative of subgridscale
processes. It is common in such cases to use extra viscosity at the boundaries in the form of
sponge layers, or to use special outflow boundary conditions. This is undesirable, as besides
stabilizing the solution, viscosity damps out the motions of interest which may be driven
by the open boundary conditions within a limited domain.

The momentum equations without the hydrostatic approximation, on the other hand, are
well-posed in domains with open boundaries. They cannot, however, always be used in their
exact form as a model for large scale oceanographic flow. Such flow is nearly hydrostatic,
and the fine balance between the pressure gradient and weight of the fluid (or the fine balance
between pressure gradient and the Coriolis term in the case that the hydrostatic balance is
subtracted out) in the vertical momentum equation, cannot, in some large-scale situations,
be computed to sufficient accuracy. The hydrostatic approximation which assumes the ver-
tical pressure gradient and weight of the fluid to be in exact balance would circumvent this
problem by eliminating the vertical momentum equation altogether, but would also render
the problem ill-posed when there are open boundaries. Instead, we use an alternate approx-
imation for such situations, that is to allow a greater deviation from the balance between the
pressure gradient and weight of fluid than really exists. This results in the so-calledreduced
equations suggested by Browninget al. [2]. They are nonhydrostatic in form, and with
suitable boundary conditions, are, like the unaltered nonhydrostatic equations, well-posed
in domains with open or solid boundaries. The approximation made in these equations
ensures a desired relative accuracy in all the solution variables and can in situations, as
those treated in this paper, speed up the computation considerably. Since the approximation
entails merely a modification to the scaling coefficient in the vertical momentum equation,
one can easily revert to the unaltered nonhydrostatic equations when the situation permits.

While the well-posed nonhydrostatic model has the advantage of handling open bound-
ary conditions very smoothly, we must contend with the fact that these equations require
computing a three-dimensional pressure field, compared to a two-dimensional one in the
hydrostatic case. However, this is not quite as expensive as one would imagine. The hy-
drostatic nature of large-scale flow renders the equations and, consequently, the Laplacian
operator of the pressure in the elliptic pressure equation highly skewed. This inhomogeneity
is taken advantage of by using line by line relaxation (or equivalently block relaxation) in
greatly speeding up the solution of the three-dimensional elliptic equation for pressure [8].
Thus, the solution procedure is merely two to three times more expensive than the solution
of the hydrostatic equations.

In this paper, we demonstrate the use of the nonhydrostatic equations to model large-
scale (mesoscale) flow in limited oceanic domains by modeling a 10◦ × 10◦ region of the
open Atlantic using the flow fields from the global circulation model (GCM) of Semtner and
Chervin (1992) [15] (hereafter SC) to provide initial and boundary conditions to the domain.
The model has a free-surface, mixed layer and varying bottom topography and produces
a realistic picture of the ocean at high resolution (assuming the boundary conditions are
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realistic). To test the well-posedness of the model, we exclude the viscous terms from the
equations entirely (although they could easily be added if desired) and contrast these results
with those from an attempt to use the hydrostatic version of the same model.

While modeling the limited region, we show that we are able to vary the resolution in the
domain to observe varying degrees of detail in the flow. Using higher resolution than is used
in the GCM enables us to examine the flow in greater detail than was previously possible.
The energetics of the finely resolved solution are quite different from the low resolution
solution.

Although the nonhydrostatic model overcomes the ill-posedness of the traditional primi-
tive equations in limited domains, limitations arising from the approximation of specifying
only normal-to-boundary information through the boundary conditions and from selectively
refining a region of the larger domain still exist. To evaluate these shortfalls, we compare
the solution in a subregion of the domain with that obtained from modeling the subregion
separately by using boundary conditions from the larger domain.

The need for embedded and nested models, in meteorology for weather prediction, as
well as in oceanography [12, 20, 17, 4 (and references therein)] to model regional and
small-scale phenomena has led to a history of literature on the subject. Some of the best
examples of regional primitive equation ocean modeling are due to Spall [16, 18] who
succeeds without sponge layers and with what is regarded as a very acceptable value of
eddy viscosity. But most would agree, as our results also show, that the use of primitive
equation models in open domains is not straightforward, and more often than not requires
some special treatment to stabilize the solution.

Our limited area model may be considered “one-way” nested within the SC model, but
in this study, we will think of the SC fields merely as boundary and initial data that could
alternatively be assimilated from observations. If we were to nest our model within a large-
scale model with the purpose of selectively refining regions of the domain, we would need
to choose the region of our refinement more carefully, making sure that the resolution of
the outer model were sufficient to correctly diagnose the flow on the boundary of the nested
refinement.

The ocean model and numerical solution procedure used here is based on that described
in [9, 8]. Here, in Section 2, we only briefly present the model equations and solution
procedure. In Section 3 we describe the model’s implementation in a region of the Atlantic
ocean. Section 4 presents our modeling results and observations.

2. A WELL-POSED NONHYDROSTATIC MODEL

2.1. Model Equations

We scale the momentum equations for mesoscale flow choosing the advective time scale
and assuming that the horizontal pressure gradient is of the order of the Coriolis terms.
Using ε to denote Rossby number (=U/F L, whereU is the characteristic velocity,F is
the characteristic value of the Coriolis parameter andL is the horizontal length scale),δ
to denote the aspect (characteristic depth to length) ratio, and making use of the Boussinesq
approximation, we write the dimensionless equations that constitute a nonhydrostatic free-
surface model for mesoscale flow as

Ds

Dt
= S (2.1a)
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DT

Dt
= T (2.1b)

Du

Dt
+ 1

ε
(ghx + rx + γqx − f v + εδbw) = ∂τx

∂z
(2.1c)

Dv

Dt
+ 1

ε
(ghy + r y + γqy + f u) = ∂τy

∂z
(2.1d)

Dw

Dt
+ α

(
qz− bu+ ελ(u

2+ v2)

a

)
= 0 (2.1e)

ux+vy+εwz = 0 (2.1f)

ρ = ρ(s, T) (2.1g)

∂h

∂t
+ ε

F 2

(
∂

∂x

(∫ H
D h

−d
u dz

)
+ ∂

∂y

(∫ H
D h

−d
v dz

))
= 0, (2.1h)

where

D

Dt
≡ ∂

∂t
+ u

∂

∂x
+ v ∂

∂y
+ εw ∂

∂z
.

Here x and y are defined as eastward and northward distances along the surface of the
globe,z is the distance from the surface of the globe in a direction antiparallel to gravity,
andt is time. The Coriolis parametersf = 2Ä sinφ andb= 2Ä cosφ are twice the earth’s
angular velocity resolved normal and tangential to the earth’s surface at a given point whose
latitude isφ. In the equations they are nondimensionalized byF . The velocity components
u, v, w are in thex, y, zdirections, respectively. The variables represents the salinity,T the
potential temperature,h the elevation of the free-surface,q the nonhydrostatic component
of the pressure,r the hydrostatic pressure due to density variations from the mean,ρ the
potential density anda the distance from the center of the earth. All the quantities have been
nondimensionalized so that they and their derivatives, too, are order 1. The dimensionless
parameterλ is the ratio of the characteristic horizontal length scale to a characteristic value
of the earth’s radius, andγ is the ratio of the characteristic nonhydrostatic to hydrostatic
pressure gradient.F is the Froude number(=U/(gD)1/2, whereU and D denote the
characteristic velocity and depth of flow) andH/D is the ratio of characteristic free-surface
elevation to depth scale. The flux of heat and salt at the ocean surface are modeled by
the (nondimensionalized) source termsT andS. Wind stresses in thex and y direction
are denoted by dimensionlessτx and τy. Viscosity and diffusion are neglected in these
equations. Equation (2.1g) is an equation of state for the potential density.

The value of the dimensionless coefficientα in (2.1e) is 1/ε2δ. A significant approxi-
mation that can be made to these equations [2] is to modify the value ofα to be smaller
than 1/ε2δ by a few orders of magnitude. This is helpful in the case of very large scale
flow, when numerical limitations prevent us from computing the sum of the parenthesized
terms in (2.1e) to sufficient accuracy, and using the original value ofα becomes infeasi-
ble for computational reasons. One can show from scaling that the error in making this
approximation isO(1/α) [9, 2]. A choice ofα= 10N maintainsN digits of accuracy in
the dimensionless solution variables. Thus, a prodigious choice ofα ensures the desired
accuracy in the model. Changing the value ofα does not modify the form of the equations
and both the “exact” nonhydrostatic equations with unalteredα, as well as the so-called
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reducedequations with modifiedα are well-posed in domains with open boundaries at
which point-wise boundary conditions can be specified.

In this nonhydrostatic model, it is important that the Coriolis acceleration(bw, 0,−bu)
resulting from the tangential component of the earth’s angular velocityÄ cosφ not be
neglected. The reason for this is made clearer when the hydrostatic balance is subtracted
out of the equations as is done in this formulation. The total fluid pressure is written as the
sum of a hydrostatic componentph and a nonhydrostatic componentq. Hereph is defined
such that

∂ph

∂z
+ ρg = 0, (2.3)

whereg denotes the acceleration due to gravity. Using (2.3), the scaled vertical momentum
equation reduces to

Dw

Dt
+ γ

ε2δ2
qz− 1

ε2δ
bu+ λ

εδ

(u2+ v2)

a
= 0. (2.4)

The last term in this equation is due to the curvature of the earth. The largest term in the
vertical momentum equation is the Coriolis acceleration which ought not to be neglected.
It is balanced byqz which must be the same order in magnitude. This implies that

γ = δ (2.5)

or that the ratio of the characteristic nonhydrostatic to hydrostatic pressure gradient is of
the order of the aspect ratio.

From (2.3), we see that the horizontal pressure gradient in thex (and similarlyy) direction
is then given by

ρ−1
0 px = ρ−1

0

(
ph

x + qx
) = ghx + g

∂

∂x

∫ h

z

(ρ − ρ0)

ρ0
dz+ ρ−1

0 qx, (2.6)

whereρ0 is the mean potential density,h is the free-surface elevation, andz is the depth
at which the pressure gradient is derived. In the equations above we user to denote the
baroclinic component of the pressureg

∫ h
z (ρ − ρ0)/ρ0 dz.

Formulating the model with a free-surface avoids the use of the rigid lid boundary con-
dition w= 0 at the free-surface and has some other advantages: (a) It enables us to easily
decompose the pressure into hydrostatic and nonhydrostatic components and, thus, subtract
the hydrostatic balance out of the vertical momentum equation. When using a modified
value ofα (¿1/ε2δ), this ensures that the three central bands of the matrix arising from
the discretizaton of the elliptic pressure equation are much greater than the off-center ones,
thus enabling considerable speedup in the solution procedure. (b) We can use a Dirichlet
boundary condition when solving for the nonhydrostatic pressure field (although there are
other methods to remove the nonuniqueness and the Neumann problem poses no difficulty
[G. L. Browning, personal communication]). (c) Free-surface elevation is of interest in
oceanography, particularly with the advent of satellite altimetry.

2.2. Boundary Conditions

It is shown by Majda [10] that the boundary conditions for the incompressible Euler
equations are the same as those for the compressible case. The boundary conditions for
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(2.1) can be derived by examining the characteristics (in a direction perpendicular to the
boundary) of the equivalent compressible system of equations that retains the time dependent
pressure equation,

Dp

Dt
+ ε

M2
(ux + vy + εwz) = 0, (2.7)

in place of the incompressibility condition (2.1f). Boundary conditions are to be prescribed
along incoming characteristics. The characteristic equations in thex directions (written
out in [9, Section 4c]) indicate that the following boundary conditions can be specified
at a boundary normal to thex direction for a well-posed problem. Atsolid boundaries,
the normal velocityu is zero. This is adequate information as there is only one incoming
characteristic. Atinflow boundaries(boundaries where fluid enters the domain), five of
the six characteristics are incoming and we need to specify five out of the six variables
u, v, w, s, T, p. Alternatively, we could specifyv,w, s, T and a combination ofu and p
that is of the formu+ p/

√
αε. We choose to specifyu, v, w, s, T to describe the velocity

and density of the incoming fluid. Atoutflow boundaries(boundaries where fluid exits the
domain), one characteristic is incoming and we need to specify either the normal velocity
or the pressure (or a combination of the two which is of the formu− p/

√
αε). Likewise,

boundary conditions can be written for any boundary by examining the characteristics in
the direction normal to it.

At the free-surfacethe pressure is zero. Hence, the nonhydrostatic component of the
pressureq= 0. It is necessary to specify either the total flux in and out of the domain or
the height of the free-surface at the lateral boundaries in order to compute the free-surface
elevation in the domain.

2.3. Numerical Solution

We use a finite volume method for the numerical solution of the equations. The procedure,
described in detail in [8], uses a three-stage Runge Kutta scheme to integrate the equations
in time. Within each of the three-Runge Kutta stages, we compute the advection terms
using the second-order quadratic upstream interpolation scheme “QUICK” [6], compute
the free-surface elevation by solving a two-dimensional elliptic equation, solve for the
“hydrostatic” horizontal velocities, compute the nonhydrostatic pressure fieldq by solving
a three-dimensional elliptic equation using the multigrid technique, and finally compute the
divergence-free velocity.

Treatment of the Coriolis terms.We find, that for the sake of stability, it is better to
lump (1− γ ) times the Coriolis termsf u, − f v with the hydrostatic pressure gradient
andγ times f u, − f v with the nonhydrostatic pressure gradient. We essentially model the
Coriolis terms explicitly; i.e., we use previously computed velocities for the Coriolis terms.
The disadvantage of this is that the numerical solution admits inertial oscillations. These
are triggered by disturbances at the open boundaries and may need to be filtered from the
vertical velocity field if it is to be used.

2.4. Choice ofα

Computations performed by Newberger and Allen [13] with the reduced (using modified
α) and exact (using the originalα) nonhydrostatic equations suggest that it is best to modify
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α as sparingly as possible. However, these computations, as well as those of Marshallet al.
[11] that compare the hydrostatic and exact nonhydrostatic equations, are in a relatively
small domain of 100–200 km horizontal extent and use a relatively very high resolution
(∼1 km).

At the larger scales and coarser resolution that we are dealing with, we find that there
are substantial advantages in modifyingα. Besides overcoming the numerical accuracy
problem on account of the large value ofα that we are contending with, we find that a
certain amount of modification toα speeds up the solution process considerably. Perform-
ing some test calculations in an ocean basin withα= 100, 1000, 10000 for a flow where
the true value ofα, 1/ε2δ= 10000, and the resolution is 0.4◦ (as in the example here),
we find that the solutions withα= 1000 andα= 10000 are indistinguishable, while the
solution withα= 100 shows some differences. Further, the solution process withα= 1000
is 6.5 times faster than that whenα= 10000. Being satisfied with its accuracy, we use
α= 1000 for the 0.4◦ and 0.2◦ resolution runs, andα= 4000 for the 0.1◦ resolution run
performed here. Scaling analysis [9, 2] shows that the relative error in the approximate
equations that use a modifiedα scales asα−1 for values ofα less than its original value
1/ε2δ.

3. MODEL APPLICATION TO A REGION OF THE OPEN OCEAN

3.1. Domain and Forcing

We have chosen a region 30◦–40◦N and 60◦–50◦W, east of Bermuda in the Atlantic
ocean, as a testbed for the model with open lateral boundaries on all sides. The region
is a convergence zone for surface currents and is characterized by eddies and fronts. The
model is run for a period of 4 months, initializing it with the Semtner–Chervin (SC) flow
fields of July 28, 1987. The choice of region and time of year for the model runs was
motivated by wanting to study the vertical transport of phytoplankton supporting nutrients
into the euphotic layer of the ocean by eddies and fronts [7]. The year itself is chosen
ad hoc.

We characterize the mesoscale flow in this region by choosing the horizontal length scale
L = 100 km, vertical scale D= 1000 m, horizontal velocityU = 1 m/s and characteristic
Coriolis parameterF = 10−4/s. Thus the Rossby numberε= 0.1, aspect ratioδ= 10−2,
and ratio of nonhydrostatic to hydrostatic pressureγ = 10−2. The characteristic vertical
velocity W= εδU = 10−3U .

The model domain is defined by four vertical lateral faces, the ocean surface, and the
sea bed. The domain is initialized and driven at the lateral boundaries with flow fields
from the 0.4◦ resolution2 Semtner–Chervin (SC) model. These flow fields are available at
3-day intervals on a 0.4◦ resolution latitude–longitude grid which is stair-stepped to fit the
topography with variable grid spacing in the vertical. They are interpolated in time and
space onto our model grid (described in the next section). We run the model at horizontal
resolutions of 0.4◦, 0.2◦, and 0.1◦with a time step of 50 min to satisfy the CFL condition. The
model may be considered as nested or embedded within the SC model in a noninteractive
or passive manner.

2 This is better known as the (1/4)-degree model in the literature. It uses a Mercator grid, the spacing of which
is approximately 0.4◦ in the region modeled by us, but globally averages to about 0.25◦.
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Topographic data is extracted over a large region of the Atlantic containing the model
domain on a 5′ grid and is smoothed with several passes of a Laplacian filter so that it may be
smoothly represented at 0.4◦ resolution. The topography from the 5′ grid is then interpolated
onto the 0.4◦, 0.2◦, and 0.1◦ grids used in the simulations. The smoothing is done prior to the
interpolation so that the bathymetry is consistent between the low and high resolution runs.
As in the SC model, we relax salinity and temperature in the surface layer to Levitus monthly
climatological sea surface temperature and salinity with an e-folding time of one month.
We also apply the Hellerman and Rosenstein [5] monthly climatological windstress at the
surface (SC used the European Centre for Medium-Range Weather Forecasts’ (ECMWF)
winds for the specific period). The wind has a negligible effect on the dynamics at the small
time and spatial scales of interest, but plays a role in determining the mixed layer depth. We
impose forcings of heat, salt and wind, similar to SC, in order to maintain compatibility with
the SC flow which we use as initial and boundary conditions. The monthly climatological
forcing imposes the seasonal variation that is observed in the ocean. While the higher
resolution runs can be forced at finer scales and can handle more topographic detail, we
use a consistent forcing for all the different resolutions. This is to isolate the effect of the
grid resolution from the effect of finer scale forcing on the solution. In reality, one may of
course wish to take advantage of prescribing the forcing and geometry at higher resolution
when possible.

3.2. Grid

Viewed from above, the domain is discretized along lines of latitude of longitude as in
the SC model. We use three different horizontal resolutions for our numerical simulations:
0.4◦ (actually 0.4◦ × 0.33◦ as in the SC model), 0.2◦, and 0.1◦. The 0.4◦ grid uses 24× 28
grid cells to discretize a region that is approximately 10◦ × 10◦; the 0.2◦ and 0.1◦ grids use
48× 56 and 96× 112 grid cells, respectively.

In the vertical, our grid is not coincident with the vertical boxes of the SC model, but it is
a smoothly boundary-fitted “sigma” grid comprised of four regions as shown in Fig. 1. The
topmost layer of grid cells is themixed layer, whose depth varies as the free-surface elevation
and mixed layer depth change. The mixed layer depth is modeled using the bulk mixed layer
model of Chen and Rothstein [3]. It varies between 10 and 125 m in response to the wind,
temperature, and salinity forcing. Below the mixed layer is a finely discretized thermocline
region, consisting of eight layers and extending to 510 m depth in this simulation. The
mid-region, extending from 510 m to 2510 m and consisting of 10 layers in this case, has
horizontal grid surfaces, and the abyssal region consisting of five layers has a “sigma” grid
that follows the topography. In each section, the grid is exponentially stretched so as to
achieve a grid whose spacing increases smoothly with depth. We use a total of 24 layers
in the vertical, compared to a maximum of 20 boxes in the SC model. By restricting the
topography-fitted “sigma” grid to the bottommost section consisting of five layers in this
case, most of the grid surfaces are maintained horizontal or nearly horizontal, especially in
the stratified region of the water column. It is advantageous that the grid layers are nearly
parallel to the stratification when computing the horizontal hydrostatic pressure gradients
in the sigma coordinate system.

The vertical grid is consistent for all the different horizontal resolutions used here. Com-
parative runs with increased vertical resolution revealed that the flow is more sensitive to
increasing the horizontal resolution rather than the vertical resolution. Hence we concen-
trated on refining only the horizontal grid in this study.
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FIG. 1. A schematic vertical section of the grid showing its four sections: the mixed layer, the thermocline
region, the mid-region comprising horizontal layers and the abyssal region consisting of the topography-following
sigma grid. In each region we use a smooth exponential stretching to achieve an increasing grid spacing with depth
within each region as well as overall.

Discretization of pressure gradients on a“sigma” grid. A notorious problem with a
topographically fitted sigma grid is that large errors can occur in computing the horizontal
gradient of the pressure, when the sigma surfaces are steeply tilted. This is because the
horizontal pressure gradient is the sum of the pressure gradient along the sigma surface
and the pressure gradient in the vertical, each multiplied by a coefficient of grid curvature.
Since the stratification in the fluid is almost horizontal, the terms must nearly cancel out.
But cancellation errors can give rise to erroneous pressure gradients that accelerate the flow.
To minimize this sort of error, we take two precautions. First, we restrict the topographic
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FIG. 2. The horizontal gradient of the hydrostatic pressure due to density variations is evaluated by taking
differences in the pressure at the horizontal level at which the gradient is to be evaluated. Thus, the horizontal
pressure gradient at celli,j,k is evaluated by taking the difference of the hydrostatic pressure evaluated at points
such as A, B (and two others outside the plane of the paper) along the horizontal plane denoted by the dotted line.
This alleviates the error that may occur from inaccuracy in computing the cancellation between terms when the
pressure gradient is evaluated in the sigma grid system.

sigma grid to the bottom five layers which are nearly homogeneous in most parts. The rest
of the grid surfaces are horizontal or nearly horizontal. Second, we compute the horizon-
tal pressure gradients by taking differences only along horizontal surfaces. To do this we
compute the pressure due to the fluid weight in adjoining cells at the horizontal level of the
cell where the pressure gradient is being evaluated (see Fig. 2). This involves computing
the pressure in adjoining grid cells at a point that may lie above or below the cell center.

3.3. Initialization and Boundary Implementation

We linearly interpolate the SC model data on to our model grid at the boundaries and
throughout the domain at initialization. Since the available SC model flow fields are at 3-
day intervals, we also use linear interpolation between the 3-day separated fields to provide
boundary data at intermediate times. The interpolation at boundaries is not mass conserving,
but other authors [17] using nested models have experienced trouble with conservative
interpolation schemes and found strict mass conservation to not be necessary.

We use the interpolated SC data to determine whether a grid cell face on a lateral boundary
is an inflow or outflow face, or whether fluid is entering or leaving the grid cell at that face.
If it is an inflow face, we specify the three velocity components, salinity, and temperature
at the grid cell-center. We also specify the influx on the cell face. If it is an outflow face,
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we specify merely the velocity component normal to the face, and the resulting outflux on
the cell face. The sum of influx and outflux over the boundary column of cells provides the
boundary condition for the elliptic equation for free-surface elevation. We chose to use this
rather than the free-surface elevation itself at the boundary.

Pressure as an alternative outflow BC.In the simulations presented here, we specified
the normal outflow velocity as an outflow boundary condition. An alternative would be to
specify the pressure at the outflow. Since the nonhydrostatic component of the pressure is
not available from the hydrostatic SC model data, we tried specifying a pressure derived
by integrating the vertical momentum equation withDw/Dt = 0 at the outflow. Since the
vertical nonhydrostatic pressure gradientqz is in near balance with the Coriolis acceleration
bu in the vertical momentum equation (2.1e), the value ofq is primarily set by this balance,
and there is no significant difference in the solution using either of the two boundary
conditions at the outflow. We found it simpler to specify the outflow velocity and continued
to use this as the boundary condition at outflow.

Conserving the total fluid volume over time.In order to keep the mean sea surface from
dropping or rising with time, we impose the constraint that at a given instant, the flow out
of the domain equals the flow into the domain. We modify the interpolated outflow velocity
values by the minimum possible to meet this constraint. This results in all the outflow
fluxes being modified by a small constant at each time step. The adjustment would not be
necessary if the interpolation from the SC grid to our grid were mass conserving, or if we
could obtain more accurate boundary conditions that did not result in a significant mass
flux and unrealistic sea level change with time.

Region in which nonhydrostatic pressure develops.The nonhydrostatic pressure field
is not specified at the boundary. Thus there is a small region near the boundary in which
the flow field adjusts from being hydrostatic outside the domain, to being nonhydrostatic
inside the domain. We allow a two grid-cell-wide region outside of the lateral boundaries for
setting up the nonhydrostatic pressure field. The horizontal velocity boundary conditions
are prescribed outside of this two cell-wide region to allow the nonhydrostatic pressure field
to develop before getting to the domain boundary, wheres, T , andw are specified. The
vertical velocity within this region is unreliable because the nonhydrostatic pressure is not
fully developed, and we avoid using it to compute the advection of variables.

3.4. The Hydrostatic Counterpart

The nonhydrostatic model may be converted in to a hydrostatic one by setting the dimen-
sionless coefficientγ in (2.1c) and (2.1d) to 0. The horizontal momentum equations then
reduce to the hydrostatic horizontal momentum equations. Since the flow is incompressible,
the vertical velocity computed will inevitably be the hydrostatic one, even if we compute it
from the pressureq as in the nonhydrostatic case. To compare the hydrostatic and nonhy-
drostatic calculations in a consistent way, we maintain the same solution method for them
both and change only the nonhydrostatic parameterγ . In the nonhydrostatic model,γ = δ,
the aspect ratio. In the hydrostatic model,γ = 0.

3.5. An Embedded Subregion

As a way to evaluate the performance of the boundary conditions, we model the interior
5◦ × 5◦ subregion of the 10◦ × 10◦ region using boundary conditions from the outer region.
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We then compare the solution obtained in the subregion when it is modeled separately
with that obtained from modeling the entire 10◦ × 10◦ region. If the boundary conditions
were perfect, the solution obtained in the subregion by the two methods would be identical.
However, the boundary conditions are only prescribed along characteristics normal to the
boundary and have their limitations. The objective of this comparison, which we perform
with the 0.2◦ resolution model, is to evaluate how well the boundary conditions can simulate
the desired flow in the subregion.

A further question concerns the use of such limited area models to selectively refine a
small region of a larger coarse grid calculation. If fine scale structure is developed near the
boundaries of the finely resolved region, then there is the concern that the underlying coarse
grid that is incapable of resolving this fine structure will not provide the right boundary
conditions to the fine grid. To investigate this, we use 0.1◦ resolution on the 5◦ × 5◦ subregion
of the domain modeled at 0.2◦ resolution. The solution in the subregion is then compared
to the 0.2◦ resolution solution and also to the case when the entire domain is modeled at
0.1◦ resolution.

4. RESULTS AND DISCUSSION

We are able to use the nonhydrostatic model with open lateral boundaries on all sides,
even when the equations contain no viscous terms. We use different resolutions (0.4◦, 0.2◦,
and 0.1◦) to model a region of the ocean for a period of 4 months, using the 0.4◦ resolution
SC flow to prescribe initial and boundary conditions.

When we attempt to run the hydrostatic version of the same model at the coarsest resolu-
tion (0.4◦), we find that disturbances propagate inward from the open boundaries, growing
rapidly with time. The model fails catastrophically within the first day and a half of model
simulation. (See Fig. 3a.) On the other hand, we have no trouble running both hydrostatic
and nonhydrostatic versions of the same model for long periods of time in an enclosed do-
main (a channel with solid boundaries and periodic inflow–outflow on the east–west walls,
a snapshot of which is shown in Fig. 3b). We infer therefore that the failure of the hydro-
static model in the open ocean is a consequence of its ill-posedness in open domains. We
would need to make some modification, such as introducing eddy viscosity or some special

FIG. 3. The temperature field one grid-point below the surface in the hydrostatic model (a) with open bound-
aries on all sides just 40 time steps (of 50 min) after initialization and (b) in an enclosed channel with an east–west
throughflow 1 year after initialization. Boundary conditions in the enclosed channel allow no flow through the
solid walls and are periodic in the east–west direction through the inflow and outflow section.



        

LIMITED REGION OCEAN MODEL 567

FIG. 4. The temperature field on day 60 of the simulation approximately 44 m below the sea surface (one
grid-point below the topmost in our model). The first panel shows the temperature from the 0.4◦ resolution SC
model at the same time, but interpolated in the vertical onto our model grid. The second (top right), third (lower
left), and fourth (lower right) panels show the temperature predicted by our model when using a horizontal grid
resolution of 0.4◦, 0.2◦, and 0.1◦, respectively. The vertical grid in all our model runs is the same. The initial and
boundary conditions for all model runs were interpolated from the SC flow fields shown in the first panel.

boundary treatment that is not necessary in the nonhydrostatic model to stabilize the hy-
drostatic solution.

Modeling a region of interest at higher resolution than the fields providing boundary
conditions is of value if resolving processes that were omitted at coarser resolution. Figure 4
shows the temperature field from the SC model and from our 0.4◦, 0.2◦, and 0.1◦ model
embedded within a 10◦ × 10◦ region of the Atlantic, 60 days after initialization. Increasing
resolution has the effect of resolving a lot more of the eddy and frontal structure than was
captured in the 0.4◦ resolution model. The higher resolution model runs exhibit a greater
length of frontal zone across which properties change rapidly. Since much of the vertical
motion in the ocean occurs at fronts [19, 1], resolving the frontal structure and eddies
has considerable implications in modeling the vertical exchange of properties between the
surface and deep ocean. Increased resolution enhances, for example, the vertical transport
of nutrients for phytoplankton production [7], heat and salt fluxes, and the exchange of
oxygen, carbon dioxide, and other atmospheric gases. The difference between the 0.1◦ and
coarser resolution results is particularly striking as the internal Rossby radius of deformation,
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FIG. 5. The kinetic energy (KE) integrated over the volume of the domain and normalized, plotted as a
function of time for the different resolution model runs. KE= ∫Ä(u2+ v2+w2) dÄ, whereÄ denotes the volume
of the domain, and is computed as6(u2

i + v2
i + w2

i )1Äi , wherei denotes the grid cell.

which is the natural length scale of eddies formed by baroclinic instability in the ocean,
gets resolved on the 0.1◦ grid.

The finely resolved flow is more energetic than the coarsely resolved one, by a factor of
1.2–1.8 (see Fig. 5). The kinetic energy builds up over a period as more small-scale structure
develops in the flow field at higher resolutions. The energy residing at various length scales
of the flow also differs between the different simulations. The coarser resolution runs are
unable to resolve the scale at which most of the energy resides in the fine scale calculation.
In Fig. 6 we plot the power spectral density of the horizontal velocity components in the
layer below the mixed layer averaged alongx andy directions on day 60 of the model run.
The 0.1◦, 0.2◦, and 0.4◦ models exhibit their highest peaks at wavelengths of approximately
0.5◦, 1.2◦, and 2.4◦, respectively. The 0.2◦ and 0.4◦ models are unable to represent the peak
at 0.5◦ wavelength, and the 0.4◦ model is unable to represent the peak at 0.5◦ and 1.2◦

wavelength. The coarser resolution runs seem to exaggerate the energy content in the larger
wavelengths while being unable to represent the smaller wavelengths.

With increasing resolution, the model becomes more sensitive to the numerical method
and interpolation and is more difficult to run for longer periods of time. This is because

FIG. 6. The power spectral density of the horizontal velocity components in the layer below the mixed layer
on day 60 of the model run for the different resolutions. In (a) theu velocity is averaged in the E–W direction and
in (b) thev velocity is averaged in the N–S direction.
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FIG. 7. Time evolution (progressing from left to right, top to bottom) of the temperature field in the 0.1◦

resolution model. Each snapshot is separated by 15 days, starting with the initial field on July 28, 1987 and
progressing through 120 days. The figures display the fields one grid layer below the surface mixed layer. The flow
field is initially smooth because we have initialized the model by interpolating data from the 0.4◦ resolution SC
model. The change in mean temperature over time is largely due to the surface heat flux prescribed in the model.

FIG. 8. The temperature (upper four plots) and velocity fields (lower four plots) on day 60 of the simulation
approximately 240 m below the sea surface (5 grid points below the topmost in our model) plotted within the
interior 5◦ × 5◦ subregion of the 10◦ × 10◦ domain. In each set of four plots, the first plot (upper left) shows the
subregion modeled at 0.2◦ resolution with boundary conditions from the 0.2◦ resolution simulation of the 10◦ × 10◦

domain, the same subregion of which is plotted below (lower left). The upper right shows the subregion modeled
at 0.1◦ resolution, using the same 0.2◦ boundary conditions. It is compared to the subregion extracted from the
0.1◦ resolution model simulation of the entire domain (lower right).
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we are forcing the higher resolution runs with lower resolution boundary conditions. Over
a period of time, the solution in the interior of the model domain gradually begins to
differ from the exterior forcing field, particularly when higher resolution is used, and this
forces us to limit the length of our simulations (to about 4 months in this case). This is a
limitation of this kind of regional modeling. When the model is used to selectively refine
a region within a coarser large-scale model (an issue which is further discussed below),
longer simulations can be achieved by “two-way” nesting the limited area model within
the outer model that provides the boundary conditions. Then the solution of the outer
model is modified to match the solution in the limited-area model, presumed to be more
accurate because of the higher resolution used. This would keep the embedded model and
its boundary conditions in synchrony and prevent problems arising from discrepancy in the
resolution, but it would further propagate the solution error arising from the orthogonal
boundary condition formulation described below. Figure 7 shows the time evolution of the
temperature field from the 0.1◦ resolution model in the 10◦ × 10◦ region of the Atlantic.
The fine scale flow can be seen to develop from the smooth initial condition over a period
of a few weeks and then to deteriorate in the last two weeks of the simulation as the interior
solution begins to diverge from the flow field that provides the boundary conditions.

While the nonhydrostatic model simulations performed here overcome the problem of ill-
posedness in open domains, they still suffer from the limitation that the boundary conditions
are prescribed along characteristics only normal to the boundary. When we compare the
solutions in the interior 5◦ × 5◦ subregion of the domain obtained (a) by modeling the
subregion separately at 0.2◦ resolution with 0.2◦ boundary conditions (Fig. 8, top left) and
(b) by extracting the subregion from the larger domain modeled at 0.2◦ resolution (Fig. 8,
lower left), we find that the former is not identical to the latter, as one would desire. We
ascribe the differences, which are more pronounced in the more variable and faster moving
upper layers of the ocean than in the interior, to the characteristics-based formulation of the
boundary conditions that only propagates information normal to the boundary and assumes
the nonorthogonal component to be negligible. This assumption of orthogonality does not
hold very well in all cases and the error introduced as a result is not restricted just to the
boundary, but propagates into the interior as well.

In this study, we have shown how we may model a region of the ocean given boundary
conditions, which are assumed to be correct. In reality, such boundary conditions may come
from limited data, and our intention would be to describe the interior flow by making the
most of them. A slightly different issue is that of selectively refining a region of interest
in one’s model domain. A general difficulty in this approach is exhibited by comparing
the solutions in the 5◦ × 5◦ interior subregion (a) modeled at 0.1◦ with 0.2◦ resolution
boundary conditions applied at the boundary of the interior subregion (Fig. 8, top right) and
(b) extracted from the larger 10◦ × 10◦ region modeled entirely at 0.1◦ resolution (Fig. 8,
lower right). While both right-hand views seem to be plausible fine-scale representations of
either of the left-hand views, there is considerable difference between them. The difference
is not so much due to the orthogonality limitations of the boundary conditions described
above, but more because 0.2◦ and 0.1◦ resolutions in the 10◦ × 10◦ region produce different
solutions on the boundary of the 5◦ × 5◦ subregion. Hence, one ought to exercise caution
when using coarse resolution initial and boundary conditions to model a region at higher
resolution. The solution can only be as good as the boundary and initial conditions, and
the coarse resolution ought to adequately resolve the flow until such time that one decides
to selectively refine a region of it. Refinement is useful for tracking the development of a
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feature of interest for as long as the feature resides in the interior of the refinement required to
resolve it.

5. CONCLUSIONS

Using a nonhydrostatic set of equations, we are able to model a region of the open
ocean for which initial and boundary conditions are available. The ability of the well-posed
nonhydrostatic model to handle open boundaries without resorting to viscosity or any special
boundary conditions is in contrast with the difficulties associated with using the hydrostatic
model in the same situation. We can model the region at higher resolution than the initial
and boundary data. This enables us to capture the frontal and eddy structure that is important
to many ocean processes but is missed at the coarser resolution that is globally affordable
or at which the data may be available. In certain appropriate situations, the model may be
used to selectively refine a region of the global domain modeled at coarser resolution.
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